
CEGAR Predicate Abstraction

COMP

3

9

1 5

3
Algorithmic Verification

<latexit sha1_base64="P4jUUJHo6g1yopyZBD74hiv3LdI=">AAAIZHicjVRbb9NIFD6kXEKWW6l4QEhooCBalIa4JYJqVcTSF14QRaIFqanQ2D5xRpnYZjxpG6L8Cn7d/oH9EfvEmWPnRgy7juw5/ubMd75zif1Uq8w2m39fqKxcvHT5SvVq7Y9r12/cvLV6+yhLBibAwyDRifnsywy1ivHQKqvxc2pQ9n2Nn/zevtv/dIomU0n80Q5TPOnLKFYdFUhL0JfVyve2j5GKR1b1vqUqsAOD41o7TkI8zqy0WO8orfd8PcAH2826ULGySuoTsfHV2xSjtsVz63fyNeuM9t+/OxiPx38uMxgMmUD6ySkKo6KuFUln76tHVHqnhGqnnOdUJRotU/mok7OfqXZLqHbLqSKDGJeJ0ruOqSw/r5xpiJqkMNWMhOW0Skha5STBUMZzeTmKVl0GAaZWxRGX6fzXdQqNPMubgmGEXIgydGeGuqoXqDeH7paiM4bWHNqa8Z5vFikJacWGV9/yGtNWkMq/dJQYZbt9FYgjNNMJZO0Yhwvz9+XWerPR5EssG15hrENxHSSrlTa0IYQEAhhAHxBisGRrkJDR7xg8aEJK2AmMCDNkKd5HGEONzg7IC8lDEtqjZ0RvxwUa07vjzPh0QFE03YZOCnhc+IRkdxjNVxdfzPn+KsaIuZ3GIa1+wdkn1EKX0P86N/H8v+dcTpYUvuRcFOlMGXFZBgsZdWjV9G5Jv3sOyRPJCumUISsgTBOaIy6GoTWvq8u8y3WW7Idk/S4Xd6oH3zj+xGeCaVp9ZjIUzeU9YE15rhLqdCal96yI7mrv8op4x50yhJ3Rvuu00zBhzqOMyGsLXrH3K9gj1OmVFNdV8gnjj+l28Xo8BYJ3cIFdMCKpFm7f5767majRvfyLaT+cVjPjPFz9keJ70IAW2f1p5IwrH5Bnh+5FBX3OVdHq5n6Zz2lxWZ7R0/VYsJ3MacgonoB97lfM/RAcyXkgc7jpzKvfWMoI4ZS7O2SdlnuC8Iw8M54ZzTmNWK/intf5H6JoR9NOxJ0dwgPKuUkdmuXsVM9nmnKlU45mp3WY/OeQJ6oLQtyd6SB7vtaLyvO6WZ7dfM4Rzum5B4/o7dFvlEw8c0SyJUlZyioM+yZFrfMTuSJTeM5mpgbuW+f9/GVbNo62G97zxvMP2+uv3xRfvSrcg4ewQfPyAl7DWziAQwgq/66Ilc2Vp1f+qV6rrlXv5K6VC8WZNVi4qvd/AB3w9Tw=</latexit>

CEGAR and Predicate Abstraction

Dr. Liam O’Connor
CSE, UNSW (for now)

Term 1 2020

1

CEGAR Predicate Abstraction

Model Checking with Abstractions

Abstractions typically have a smaller state space, so it is
advantageous to try to model check with abstractions rather than
a concrete model.
We need:

To know that properties that hold for our abstractions hold
for our model — true for all ϕ ∈ ACTL.

To know that when our properties don’t hold for our
abstractions, they don’t hold for our model — not true in
general!

We need to pick the abstraction based on the properties we care
about, and if necessary change our abstraction on the fly based on
the results we see.

2

CEGAR Predicate Abstraction

Model Checking with Abstractions

red green yellow

red ¬red

Consider the following ACTL formulae:

AG (red⇒ AX ¬red)

AG (red⇒ AX AX red)

AG (red⇒ AX AX AX red)

We know that if A v C then (A |= ϕ)⇒ (C |= ϕ) for ϕ ∈ ACTL,
but what about if A 6|= ϕ?

3

CEGAR Predicate Abstraction

Counterexamples

Note

If A 6|= ϕ for some ϕ ∈ ACTL, then there exists a run that serves
as a counterexample to the formula ϕ.

If A 6|= ϕ, that tells us either that C 6|= ϕ or that our
abstraction is not precise enough — the counterexample will
be spurious.

Our approach: To check if our counterexample is spurious,
convert it to a concrete run ∈ C.

4

CEGAR Predicate Abstraction

Abstract to Concrete Run
Let α be our abstraction mapping QC → QA and our run be
q0q1q2 We apply the mapping in reverse, α−1, and try to find
a concrete run starting from our initial state IC according to
transition relation δC :

S0 = IC ∩ α−1(q0)
S1 = δC (S0) ∩ α−1(q1)
S2 = δC (S1) ∩ α−1(q2) etc..

If there is such a run (i.e. no Si = ∅), the run is not spurious.

C1 C2 C3

A1 A2

Example

AG (red⇒ AX AX red)
Counterexample: A1A2A2

α−1(A1A2A2)
= {C1}{C2,C3}{C2,C3}

There is a run
C1

δC−→ C2
δC−→ C3

∴ Not spurious.
5

CEGAR Predicate Abstraction

Spurious Counterexamples

C1 C2 C3

A1 A2

AG (red⇒ AX AX AX red) Counterexample: A1A2A2A2

S0 = IC ∩ α−1(A1) = {C1} ∩ {C1} = {C1}
S1 = δC (S0) ∩ α−1(A2) = {C2} ∩ {C2,C3} = {C2}
S2 = δC (S1) ∩ α−1(A2) = {C3} ∩ {C2,C3} = {C3}
S3 = δC (S2) ∩ α−1(A2) = {C1} ∩ {C2,C3} = ∅

There is no concrete run — this counterexample is spurious. Our
abstraction is too imprecise.

6

CEGAR Predicate Abstraction

Abstraction Refinement

Definition

An abstraction mapping α generates an equivalence relation on
states ≡α where q ≡α q′ ⇔ α(q) = α(q′).

Consider two abstractions α : QC → QA and α′ : QC → QB .
We say that α′ refines α iff ≡α′ ⊆ ≡α.
Similarly, we say α′ strictly refines α iff ≡α′ (≡α

Informal Notion

We previously considered abstractions as grouping together
concrete states into equivalence classes. We can refine abstractions
by splitting those equivalence classes.

7

CEGAR Predicate Abstraction

Abstraction Refinement

We have a spurious counterexample q1q2q3
Which classes should we split up in our new abstraction?

Counterexample Guidance

For each qi in our counterexample, the class of concrete states it is
abstracting is α−1(qi).
We will split this class into two sets:

1 Those that follow directly from the previous state:
α−1(qi) ∩ δC (Si−1)

2 Those that don’t: α−1(qi) \ δC (Si−1)

The resulting classes will form the new, refined abstraction of our
model. If both of these sets are non-empty, we split the state qi
into two states, one for each set.

8

CEGAR Predicate Abstraction

Example

C1 C2 C3

A1 A2

AG (red⇒ AX AX AX red) Counterexample: A1A2A2A2

S0 = IC ∩ α−1(A1) = {C1} ∩ {C1} = {C1}
S1 = δC (S0) ∩ α−1(A2) = {C2} ∩ {C2,C3} = {C2}
S2 = δC (S1) ∩ α−1(A2) = {C3} ∩ {C2,C3} = {C3}
S3 = δC (S2) ∩ α−1(A2) = {C1} ∩ {C2,C3} = ∅

α−1(A2) = {C2,C3}. We have to split this into those that follow
from S0 ({C2}) and those that don’t ({C3}).

9

CEGAR Predicate Abstraction

After Splitting

We split A2 into A′2 and A′3

C1 C2 C3

A′1 A′2 A′3

We now have an abstraction that does not exhibit our spurious
counterexample, but the state space has increased.

In fact, it’s impossible to refine this further, why?

10

CEGAR Predicate Abstraction

CEGAR

This technique gives us an approach called Counterexample Guided
Abstraction Refinement (CEGAR). We have a starting abstraction
α0 and an ACTL formula ϕ:

k := 0 αk |= ϕ? αk |= ϕ

αk 6|= ϕ

Yes

Is a spurious?

No, get counterexample a

No

k := k + 1
αk := Split(αk−1)

Yes

11

CEGAR Predicate Abstraction

C Programs

Objective: Prove that our assertion is never violated.

1 int main() {

2 int i = 0, n = 0;

3 while (i < n) {

4 i++;

5 }

6 if (i < n)

7 assert(false);

8 }

`2

`3

`4

`6

`7

`8

Need to check reachability, but can we simplify the state space
first?

12

CEGAR Predicate Abstraction

Predicate Abstraction

Predicate Abstraction

A predicate abstraction of a program is a version of the program
with the same control flow graph, where all variables are replaced
with boolean overapproximations.
Booleans can be true, false, or * (nondeterministically true or
false).

13

CEGAR Predicate Abstraction

Basic PA

To start with, let’s try using i < n as our only predicate:

1 int main() {

2 int i = 0, n = 0;

3 while (i < n) {

4 i++;

5 }

6 if (i < n)

7 assert(false);

8 }

1 int main() {

2 int b = false;

3 while (b) {

4 b = b?*:false;

5 }

6 if (b)

7 assert(false);

8 } Remember,
we want our boolean program to be an abstraction.

Requirement

If a location is not reachable in the abstraction, it is not reachable
in the concrete program.

14

CEGAR Predicate Abstraction

Harder PA

Now let’s try using i < 2 and n >= 3 as our only predicates:

1 int main() {

2 int i = 0, n = 0;

3 while (i < n) {

4 i++;

5 }

6 if (i < n)

7 assert(false);

8 }

1 int main() {

2 int b1 = true, b2 = false;

3 while (??) {

4 b1 = b1?*:false;

5 }

6 if (??)

7 assert(false);

8 }

What do we use for the ?? It must overapproximate i < n.

15

CEGAR Predicate Abstraction

Abstract Condition

0 1 2 3 4 5

1

2

3

4

5

i

n i < n

n >= 3

i < 2

The only overapproximation is ¬(i < 2 ∧ n ≥ 3) i.e. !(b1 && b2)

16

CEGAR Predicate Abstraction

Harder PA

1 int main() {

2 int i = 0, n = 0;

3 while (i < n) {

4 i++;

5 }

6 if (i < n)

7 assert(false);

8 }

1 int main() {

2 int b1 = true, b2 = false;

3 while (!(b1 && b2)){

4 b1 = b1?*:false;

5 }

6 if (!(b1 && b2))

7 assert(false);

8 }

17

CEGAR Predicate Abstraction

No Predicates
The abstraction with no predicates has all states reachable:

1 int main() {

2 int i = 0, n = 0;

3 while (i < n) {

4 i++;

5 }

6 if (i < n)

7 assert(false);

8 }

1 int main() {

2 ;;

3 while (*){

4 ;;

5 }

6 if (*)

7 assert(false);

8 }

How do we find out what predicates to add? Use CEGAR!

Example (Abstract Counterexample)

Lines 3→ 6→ 7.Looking at the concrete program, this path would
require i >= n (to move from line 3 to 6) and i < n (to move
from line 6 to 7).
Both can’t be true simultaneously. This path is spurious.

18

CEGAR Predicate Abstraction

Interpolants

Craig’s Interpolation Theorem

If we have two predicates P(x) and Q(y) such are contradictory
(i.e. ¬(P(x)∧Q(y))), then there exists a predicate I (x ∩ y) which:

is implied by P(x), i.e. P(x)⇒ I (x ∩ y), and

contradicts Q(y) i.e. ¬(I (x ∩ y) ∧ Q(y)).

Crucially, the interpolant I (x ∩ y) only ranges over variables
common to both predicates.

Example

(i = 1) and i ≤ 0:i > 0

(i ≤ 2 ∧ k = i + 1) and k > 5: k ≤ 4

(i ≥ n) and i < n:i ≥ n

19

CEGAR Predicate Abstraction

Path Interpolant

Sequence of program locations

`1`2`3 . . . `k

Sequence of predicates

π1π2π3 . . . πk

π1 ∧ π2 ∧ π3 . . . πk

Non-spurious case

SAT

Spurious case

UNSAT

There exists interpolants
I1I2I3 . . . Ik−1

20

CEGAR Predicate Abstraction

CEGAR for C Programs

Let P be our program, α be our predicate set, and Pα be the
predicate abstraction of P using α. The location ` ∈ P is our bad
state we want to avoid (assertion failure).

α := ∅ Can reach ` in Pα? Program is safe

Program is unsafe

No

Is a spurious?

Yes, get witness path a

No

α := α ∪ Interpolants(a)

Yes

21

CEGAR Predicate Abstraction

Termination

On finite automata

Finite number of states

Each CEGAR loop increases the number of states in the
abstraction, but the number can’t exceed the number of
concrete states.

On C programs

(Effectively) infinite amount of states

∴ No guarantee of termination

When it terminates it is both sound (in that it always finds
errors if they exist) and complete (it will not provide spurious
errors).

22

CEGAR Predicate Abstraction

Bibliography

CEGAR is used in SLAM/SDV (Microsoft), BLAST (Berkeley) and
CBMC (Oxford).

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided Abstraction Refinement. In Computer
Aided Verification, pages 154-169, 2000

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar and
Gregoire Sutre, Software Verification with BLAST. In SPIN
Workshop 2003, LNCS 2648, pages 235-239.

23

	CEGAR
	Predicate Abstraction
	

